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Abstract. We develop a simple numerical method to integrate one-dimensional eigenvalue 
equations and apply i: to the calculation of critical screening parameters for screened 
Coulomb potentials. The method is based on the propagation matrix for the solutions of 
the eigenvalue equation and its accuracy is easily and systematically improved provided 
the coefficients of the eigenvalue equation can be expanded in a Taylor series about every 
point of the grid. We show results for the static screened and exllonential cosine screened 
Coulomb potentials. 

1. Introduction 

Screened Coulomb potentials prove to have many physical applications [ 1-31, Among 
such models we mention the static screened and exponential cosine screened Coulomb 

~~ ootentials ..... ~ _ ~ .  lssc ~~~~ and ...__. FCSC ~~ potentialsi respeaive!yf which have been wide!y discussed 
lately [4,5]. They can be written as 

v( r )  = --I-' cos(e8r) e-*' (1) 

where E = 0 and 1 in the former and latter cases, respectively. Throughout this paper 
atomic units are used. 

The most important quantities of interest regarding these potentials are either the 
number of bound states or the critical screening parameter [l]; the latter being the S 
value for which the value of the largest bound-state energy level is exactly zero. Critical 
screening parameters have been obtained by Rogers et al [ 11 and Singh and Varshni 
[ 5 ]  using numerical integration algorithms and by Kesanvani and Varshni [4] through 
an appropriate series expansion of the solution of the Schrodinger equation. Although 
the latter method is most interesting and yields remarkably accurate results, it seems 
to  be restricted to the ground state of the ssc potential. 

Recently, Ixaru et a/ [6] have proposed a method for integrating the Schrodinger 
equation based on the propagation matrix. This procedure has been simplified by 
Femindez et a/ [7] to treat quantum-mechanical models with potentials that can be 
expanded in a Taylor series about every point in a grid. The purpose of this paper is 
to show that the matrix propagation method and the power series expansion are suitable 
for caicuiating criticai screening parameters. We deveiop the method in section 2 and 
discuss results for the ssc amd ECSC potentials in section 3. 

'Work partly supported by Fundaci6n Antarchas, Project No. 11089/1. 
B To whom correspondence should be addressed. 

0301.M70~9!~09205!+0XR03.50 @ 1991 IOP hblishinp Ltd 2061 



2062 

2. The matrix propagation method 

We consider the Sturm-Liouville equation 

C G Diaz et a/ 

P ( x ) Y " ( x ) +  Q ( x ) Y ' ( x ) + R ( E ,  x ) Y ( x )  = o  a < x < b  (2a)  
where R depends parametrically on the eigenvalue E and Y ( x )  satisfies the boundary 
conditions 

( 2 b )  
It is further assumed that the functions Q ( x ) / P ( x )  and R(E,  x ) / P ( x )  do not have 
singular points in (a, b ) .  The values of the parameter E for which the boundary 
conditions ( 2 b )  are satisfied are the eigenvalues of the Sturm-Liouville problem. 

0 1 ~  Y ( a ) +  a2 Y ' ( a )  = O  PI Y ( b )  + P 2 Y ' ( b )  = 0. 

For the sake of simplicity we define 

so that the Sturn-Liouville equation can be more conveniently rewritten in matrix form: 

P(X)W(X) = Z ( x ) @ ( x )  ( 4 a )  
where 

We further define a 2 x 2 propagation matrix T ( x ,  y )  so that the solution at any 
point a S x S  b is obtained from the solution at any other point, say a c y S  b, 
according to 

@ ( X I  = n x ,  Y ) @ ( Y ) .  ( 5 0 )  

T ( Y , Y )  = I ( 5 6 )  

In order to satisfy this equation for x = y it is necessary that 

is the identity matrix. On differentiating equation (5a)  with respect to x and using 
equations (4), it follows that T ( x ,  y )  is a solution of 

P ( x ) T ' ( x , y )  = Z ( x ) T ( x , y )  ( 6 )  

with the boundary condition ( 5 6 ) .  From now on the prime denotes differentiation with 
respect to the first argument. 

It is not difficult to see that the propagation matrix can be written 

where A ( x , y )  and B ( x , y )  are two linearly independent solutions of equation (2a) 
satisfying 

A(Y,  Y )  = B ' ( x  Y )  = 1 A ' ( y , y ) = B ( y , y ) = O .  (8) 
Therefore, it is sufficient to obtain one element of each column of T. Furthermore, if 
for a given xo, a < x o <  b, we know both A ( x ,  xu) and B(x, xu) then we can write a 
solution of equation ( 2 a )  and its derivative in terms of E, Y ( x o )  and Y'(xo): 

Y ( x )  Y(xo)A(x ,  X O ) +  Y'(xo)B(x, X O )  ( s a )  

Y ' (x )=  Y(xO)A(X,  x O ) +  Y'(xO)B'(X,XO). ( 9 6 )  
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On introducing these equations into equations (2b)  we obtain a system of two linear 
homogeneous equations with two unknowns, namely, Y(xO)  and Y ( x O ) .  Therefore, in 
order to have solutions other than the trivial one the determinant of the system has to 
vanish, leading to 

n l P I ( A ( a ,  xO)B(b,  xo) - 4 b .  xo )B(a ,xo ) )  

+nlP2(B(o ,  xO)A'(b, xO) - A ( a ,  xO)B'(b, xO))  

+a&,(A(b,  x0jB'(a, xoj -A'(a, xojB(b, xO)j 

+a2P2(A'(a3 xo)B'(b, Xo)-A'(b, xo)B'(a, xo))=O (10) 

the roots of which are the eigenvalues of the Sturm-Liouville equation. For each 
eigenvalue we also obtain the ratio Y'(xo)/  Y ( x o ) ,  which determines the eigenfunction 
completely but for a normalization factor. 

For a smaii enough h vaiue, it is often possibie to obtain accurate approximations 
to A ( x + h , x )  and B ( x + h , x )  for every x value so that Q ( x + h ) = T ( x + h , x ) @ ( x )  
according to equation (sa). This fact enables one to build a grid x,, x - ~ ,  . . . , x-, = a ,  
x,, x2, . . . , x. = b, where xj = xO+jh,  and calculate 

m 

T ( ~ , x , )  =jgl T ( x - i ,  x , - ~ )  (110)  

T ( b ,  xd = II T(xj,  xj-1). ( I l b )  

Equations (1 1) give us A ( R ,  x0), A'(a, xO),  A(b ,  xd, AYb, xO). B(a, xJ, B'(a, XO), W b ,  X O )  

and B'(b, xo) in terms of E, which are then introduced into equation (IO) to obtain 
LUG G;r~Gr ,"rnuca .  

Ixaru et a l [ 6 ]  proposed an interesting and powerful way of calculating the solutions 
A ( x , y )  and B ( x , y ) .  However, in some cases it is much easier to proceed, as shown 
by Ferndndez et RI [7] for the simpler case of the Schradinger equation. In what 
follows we generalize their results to the case of the Sturm-Liouville equation. If 
Z(r+h) can be expanded in a Taylor series around h =0, 

j = ,  

.L^ ":-A ,..-- 

m 

Z ( x + h ) =  1 Z"'(x)h' (12) 
j = 0  

then T ( x +  h, x) can also be expanded as 
m 

T ( x + h , x ) =  T"'(x,x)h' (13) 

where T'O'(x, x) = T(x,  x) = I. The elements of the 2 x  2 matrices T"'(x, x) are 
easily obtained by expandinng equation ( 4 a )  in a power series of h. In fact, if 
P ( x + h ) = P ( x ) t P " ' ( x ) h + .  , , we have the following recurrence relation for the 
2 x 2  matrices T"': 

T'*+"(x, x) = [ ( k + l ) P ( x ) ] - ' ( x  Z'"(x)T"~''(x,x)  

j - 0  

/ k  

1 - 0  

- 1 k ( k - j + l ) P " ' ( x ) T ' L - J + l ' ( x , x ) ) .  

j =  I 
(14) 
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In order to calculate the eigenvalues and eigenfunctions we proceed as follows. 
First, we obtain the Taylor coefficients TI*' from the recurrence relation (14) and 
construct an approximate propagation matrix by truncating the infinite series (13)  up 
to a given order (say h N ) .  Notice that according to equation (7) we have to calculate 
only the first row of T. This step is straightforward provided the derivatives of P ( x ) ,  
Q ( x )  and R ( E ,  x )  can be obtained explicitly. In this way we calculate T ( x j ,  x j - , )  = 
T(x;+, + h, xj-J,  j = 1 ,2 , .  . . , n and T(x,,  xi ,)  = T ( x , ,  - h, x ~ - ~ ) ,  j = 1 , 2 , .  . . , m. 
Secondly, we obtain T(a, xo)  and T(b, xo) through equations ( 1 1 ) .  According to 
equation (7) these matrices give us A(x ,  xo), B(x,  x,,), and their derivatives at a and b 
which are then substituted into equation (10)  to obtain the eigenvalues. For a given 
eigenvalue the ratio Y' (xo) /  Y ( x o ) ,  which according to equations (9) determines the 
eigenfunction and its first derivative, is also derived from the boundary conditions. As 
T Z and the coefficients of their Taylor series are 2 x 2 matrices the computation of 
equations (11-14) offers no difficulty. If the matrix products are written explicitly and 
calculated progressively along the grid, it is not necessary to store these matrices in 
order to calculate the eigenvalues. If the eigenfunctions are required one has to store 
only A ( ( x j ,  a ) ,  A(x j ,  b), B(xj ,  a ) ,  and B(xj ,  b) for the desired grid points. 

3. Results and discussion , 

The radial part of the time-independent Schrodinger equation for a central-field model 
can be written as 

(15a) 
where / = 0, 1 ,  . . . is the angular momentum quantum number and the solutions for 
E c 0 satisfy 

F"(r )+[2 (E  - v(r)) - !(!+ 1 ) / r 2 ] F ( r )  = 0 

F ( 0 )  = F(m) = 0. (156) 
We specialize in the screened Coulomb potentials ( 1 )  and in the calculation of the 
critical parameters which, as said before, are those 6 values for which the largest 
bound-state energy E equals zero. The boundary conditions in such cases are known 
to be [ 4 ]  F ( 0 )  = 0 and F ( a )  = constant = 1. 

In order to apply a shooting method to the time-independent Schrodinger equation 
for the ECSC potential, Singh and Varshni [ S I  proposed the change of variables 
r = x / ( l - x )  so thatthe intervalOrr<mismappedontoO~x<I .  Theadvantageof 
this transformation is a remarkable decrease in the number of required grid points 
(compare, for instance, the calculation in [ l ]  with the one discussed below). We find 
it more convenient to use the more general mapping 

r = & / ( I  - x )  (16) 

where K is an adjustable parameter. The Schrodinger equation (15a)  can be rewritten 
in the new'variable x as a Sturm-Liouville equation ( 2 a )  where 

P ( x ) = ( l - x ) 4  Q ( x ) = - 2 ( 1 - x ) 3  
R ( x ) = 2 K 2 [ E  - V ( r ( ~ ) ] - / ( / + l ) ( / - x ) ~ / x ~  (17) 

and Y ( x )  = F ( r ( x ) ) .  
The K value is set so that the coefficients of the Taylor series for R ( x +  h )  about 

h = 0 change smoothly with S. An appropriate choice is K = 1/6, so that 6 does not 
appear in the exponential. 
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The boundary conditions for the case E = 0, namely Y ( 0 )  = 0 and Y( 1) = 1, can 
be rewritten 

Y(0) = 0 Y(1)=0  (18) 

which is a particular case of equation ( 2 6 )  where a2 = p ,  = 0, cil = p2 = 1, a = 0 and 
b = 1. Therefore, the critical screening parameters can be obtained from the roots of 

A(0, ~ d B ' ( 1 ,  X,) - A'( 1, x,)B(O, x,) =O. (19)  

in which E is sei equai io zero. 
When applying standard numerical integration algorithms to the eigenvalue 

equation (15), one has to substitute F'(rnax) = 1 for F'(m) = 1 for a sufficiently large 
value of rnax. In the present case we replace the actual end points a = 0 and b = 1 in 
equation (19) by the approximate ones a = h and b = 1 - h, respectively, so that the 
latter approach the former as h+O.  Notice that with this choice r , , , = ( l - h ) / S h  

A(h,  x,)B'( 1 - h, xo) - A'( 1 - h, x,)B(h, x,) for E = 0 is large when S # 8,. For this 
reason the critical screening parameters, i.e. the roots of f (&)  =0, are sharply defined 
and accurate results can be easily obtained by means of the Newton-Raphson method. 
This algorithm can be implemented with either numerical or analytical derivatives 
df(S)/dS. In the latter case one exploits the fact that the recurrence relation,(14) can 
be differentiated with respect to S giving a recurrence relation for the derivatives of 
the matrix elements of T which enable one to obtain df(S)/dS. 

The singularities at the end points x = 0 and x = 1 do not offer any difficulty because 
the solutions of the Sturm-Liouville equation, which have to satisfy the boundary 
conditions (18), cannot be singular at such points, otherwise one would not find any 
root off(S)=O. 

tion matrix, 

nllmot.r W~,F,, h is srrail, mL- -L------- ,nL. a"s"L"Lr V a l U C  of j ( E ) =  is a iarge L.- ... L.- 

w e  hzyp ca!c.:!ated the & i d  screening parame!orE. using a tnmcated propaga- 

N 

T ( x +  h, x) = T"'(x, x)h' (20) 
j = o  

for several values of h and N. The convergence of the method is illustrated in table 1 

value it is the most difficult to treat, and this model because Singh and Varshni [5] 
obtained accurate critical parameters by means of a shooting method. 

Table 1 shows that the method converges quickly and smoothly and that the 
convergence velocity is larger the larger the value of N. Since the same limit is obtained 
with different values of N and h (both decreasing h and/or increasing N result in 
increasing the number of operations) we may conclude that the accumulation of 
round-off errors do not affect the figures considered. 

We also calculated the critical screening parameters using the Numerov method 
described by Leroy and Wallace [8]. Because of the form of the ground-state eigenfunc- 
tion of the Siurm-Liouville equation treated here we were unable to implement the 
matching of the inward and outward integrations at an intermediate point proposed 
by those authors 181. For this reason, we integrated the Sturm-Liouville equation from 
1 to 0 (strictly speaking from 1 - h to h ) .  Besides, we used a Numerov algorithm of 
order h2 because we found it difficult to improve its accuracy for the problem discussed 
here. It is clear from table 1 that the Numerov procedure is comparable to the matrix 
propagation method of order h2 which converges too slowly to obtain highly accurate 

for the gro:...d S!E!P of the ECSC. we Choose !hiE. state because as it has the largest 8, 



2066 C G Dim et al 

Table 1. Convergence of the algorithm for the state Is of the ECSC. 

Numerov (h') 

0.723 258 945 359 290 
0.721 280 418 220 135 
0.720 704 785 383 642 
0.720 569 338 729 548 
0.720535395 818925 
0.720526913 164771 
0.720 524 792 690 076 
0.720 524 262 583 I98 
0.720 524 I30 057 215 
0.720 524 096 925 766 

Present ( N  = 6) 

0.720 550 260 489 451 
0.720 522 I69 569 028 
0.720 524088 600 926 
0.720 524085 883 120 
0.720524085 881 958 
0.720 524 085 881 953 
0.720 524 085 881 953 

Present ( N =  12) 

0.720 569 545 846 230 
0.720 524 361 079 354 
0.720 524085 862 167 
0.720 524 085 881 890 
0.720 524 085 881 953 

Present ( N = 2) 

0.744 702 036 2 14 895 
0.725 825 I01 270 036 
0.721 751 365663931 
0.720819816375769 
0.720 596 524 725 727 
0.720 542 002 I63 625 
0.720 528 540294 929 
0.720 525 I96 369 880 
0.720 524 363 112 254 
0.720524155 140414 

Present ( N = 8 )  

0.720 588 488 I50 313 
0.720 524925 980 976 
0.720 524 085 325 165 
0.720524085881 310 
0.720 524085 881 953 
0.720 524 085 881 953 

Present ( N = 4) 

0.720 368 879 064 621 
0.720 408 077 612 956 
0.720 525 091 385 301 
0.720 524 027 777 208 
0720524082333809 
0.720 524 085 654 350 
0.720 524 085 867 547 
0.720 524 085 881 047 
0.720 524 085 881 896 
0.720 524 085 881 950 

Prsrent ( N  = IO) 

0.720 457 583 278 684 
0.720 523 879 880 154 
0.720 524 085 813 419 
0.720 524085 882 200 
0.720524085 881 953 

Present ( N  = 14) 

0.720 281 084 700952 
0.720 523 547 432 746 
0.720 524 085 925 071 
0.720 524 085 881 964 
0.720524085 881 953 

Present ( N  = 16) 

0.721 730061 765 772 
0.720 524 664 082 543 
0.720 524085 865 420 
0.720 524 085 881 952 
0.720 524 085 881 953 

critical screening parameters. In our opinion the algorithm proposed here can be 
improved more easily and systematically than other numerical approaches. To do this, 
one simply includes more terms in equation (20), which are easily obtained recursively 
from equation (14), and decreases h. 

As shown in table 1, the use of approximate end points is not a serious limitation 
to the accuracy of the method, provided h is sufficiently small. However, since the 
actual boundary conditions are recovered only when h + 0 it is useless to increase N 
indefinitely without decreasing h. On the other hand, one can in principle obtain the 
exact answer when h -t 0, disregarding the value of N ( N  > 0) used. In practice, 
however, it is not advisable to use a too-small N value because it may result in a 
too-slow convergence. Because the optimum choice of N for a given problem is difficult 
to estimate beforehand we resorted to numerical experiment. We computed the time 
required to propagate the solution from 0 to 1 for different choices on N and h leading 
to the same accuracy (as a test example we used the value GFcsc( ls)= 
0.720 524 085 881 95). As the fastest case is N = 6 and h =&, we choose this value of 
N to calculate all the screening parameters shown in tables 2 and 3. These results 
exhibit the digits that are stable when h is halved. More accurate screening parameters 
can in principle be obtained by means of a convergence-accelerating procedure such 
as Richardson extrapolation, but we deem such improvement unnecessary. 

The method proposed here is simple and powerful. Among its advantages we 
mention that one can improve the accuracy of the algorithm easily and systematically. 
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Table 2. Critical screening parameten of the ECSC potential calcdated by means of the 
present algorithm with accuracy h'. 

IS 
0.720524085 881 953 
0.720 524085 88 

2s 
0.166617599995557 

0.166 617 60 

3s 
0.072436991 196400 

0.072 436 99 

4s 
0.040427221 157776 

0.040 427 22 

5s 
0.025 787 301 102 823 

0.025 787 30 

6s 
0.017878285415406 

0.017 878 28 

4f 
0.035 24! 242 !?!(I 742 
0.035 241 24 

5f 
0.023482156409613 
0.023 482 16 

6f 

0.016708 I5008785 
0.016 708 15 

2P 

0.148205032643 
0.148 205 03 

3P 

0.068 712 143 689 
0.068 712 14 

4p 

0.03 926 340 117 92 
0.03 926 340 

5P 

0.025 315 625 317 70 
0.025 315 62 

6~ 

0.017 652 070 207 41 
0.017 652 07 

58 
0.022371 423 947 612 
0.022 371 42 

6g 

0.016 099 483 083 173 
0.016 099 48 

36 

0.063 581 546 1508 
0.063 581 54 

4: 

0.037 405 048 313 45 
0.037 405 05 

5d 

0.024 500014 16225 
0.024 500 01 

6d 

0.017 242903 68898 
0.017 242 90 

6h 
0.015 455476970671 

0.015 455 48 

In fact, when the matrix Z ( x  + h )  can be expanded in a power series of h the corrections 
are quickly calculated by means of simple recurrence relations (cf. equation (14)). All 
the results shown here were obtained by means of a personal computer and an algorithm 
written in Pascal. The accuracy of the method can be seen in that our double-precision 
results appear to be more accurate than the ones obtained by Singh and Varshni [ 5 ]  
using quadruple precision. The calculations reported in this paper constitute a wholly 
demanding test for any numerical integration method because the most difficult state 
to treat is the one with energy close to zero. 

ine  main disadvantage of our approach is ihat ii is iioi so easiiji applied when the 
matrix 2 cannot be expanded in a Taylor series. However, in such a case one may 
approximate the matrix elements of Z by means of polynomials or other kinds of 
approximants. Furthermore, the powerful perturbation method proposed by lxaru [a] 
is also available. 

I 
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Table 3. Critical screening parameters of the ssc potential calculated by means of the 
present algorithm with accuracy h". 

h =& 
[I1 

h = &  
h = &  
Dl 

IS 
I.l90612421060618 
1.1906 

2s 
0.310209282713937 

0.310 1 

3s 
0.139 450 294 064 18 

0.1395 

4s 
0.078 828 I10 273 172 

0.078 8 

5s 
0.050 583 170 560 

0.0506 

5f 
0.049 831 I32 318 646 
0.049 8 

6f 
0.035 389 389 799 949 
0.035 4 

2P 

0.220 216 806 61 
0.220 I 

3P 

0.1 I2 7 IO 498 36 
0.1 12 7 

4P 

0.067 885 376 10 
0.067 9 

5P 

0.045 186 248 
0.045 2 

3d 
0.091 345 120771 732 

0.091 3 

4d 
0.058 105 052 754 469 

0.058 1 

5d 
0.040 024 353 938 325 

0.040 0 
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